This readme file was generated on [2025-03-06] by [Carlos H. Alonso Mtz.] GENERAL INFORMATION Title of Dataset: Transient collapse on CVTs examples and comparison analysis Author/Principal Investigator Information Name: Carlos H. Alonso Mtz. ORCID: https://orcid.org/0000-0002-3107-2555 Institution: NYU Email: cha258@nyu.edu Author/Associate/Co-investigator/Collaborator Information Name: Francisco de Leon ORCID: https://orcid.org/0000-0002-0777-4477 Institution: NYU Email: fdeleon@nyu.edu Was data derived from another source? If yes, list source(s): F. L. Probst, M. V. F. da Luz, and S. Tenbohlen, “Modeling of a capacitive voltage transformer for evaluation of transient response in conformity with the IEC 61869-5 Standard✰,” Electr. Power Syst. Res., vol. 223, p. 109591, Oct. 2023, doi: 10.1016/j.epsr.2023.109591 L. Kojovic, M. Kezunovic, and C. W. Fromen, “A new method for the CCVT performance analysis using field measurements, signal processing and EMTP modeling,” IEEE Trans. Power Deliv., vol. 9, no. 4, pp. 1907–1915, Oct. 1994, doi: 10.1109/61.329523. Recommended citation for this dataset: Alonso Martinez, C., & de Leon, F. (2026). Supplemental Material to Analytical Model of CVTs for the Calculation of Voltage Collapse Transients. New York University. https://doi.org/10.58153/9nh4h-nyy70 *** LICENSE The Unlicense *** DATA & FILE OVERVIEW File List: - Supplemental Calculations Steps of Voltage transient Collapse in CVTs.pdf: Contains the detailed derivation of the analytical model for voltage transient collapse in CVTs. Both for burdenless and lagging burden cases. As detail in auxiliary variables. - Model_vs_simulation_comparison_1_0.m: Matlab code to process simulation files and compare versus derived analytical model. Includes positivity and dependability analysis per case as frequency response comparison. Valid only for underdamped case. The file contains a header indicating what can be modified to select a given case. - Kojovic_1994: folder containing the simulation files and transient output plots corresponding o this transformer. - Decomposed_transient_Kojovic_1994.ecf: EMTP RV simulation file. In general circuit parameters are defined as global variables. - Figures_Kojovic_1994.pdf: Contains the produced voltage outputs from EMTPRV. - Peak_collapse_transient_BB.fig: Matlab figure of the peak collapse simulation output of complete, reduced, fast and slow cases for burden BBB (ZZ, ZZT, ZT/4, X, M, W, T, Range_II_100, Range_II_25, 400_1, burdenless). - Zero_crossing_collapse_transient_BB.fig: Matlab figure of the zero-crossing collapse simulation output of complete, reduced, fast and slow cases for burden BBB (ZZ, ZZT, ZT/4, X, M, W, T, Range_II_100,Range_II_25, 400_1, burdenless). - Kojovic_1994_3: folder containing the simulation files and transient output plots corresponding to this transformer. Has the same internal structure as Kojovic_1994. - Probst_2023: folder containing the simulation files and transient output plots corresponding to this transformer. Has the same internal structure as Kojovic_1994. - Supplemental Material Complete Derivation of Voltage Transient Collapse Analytical model in CVTs.pdf: Detailed derivation of the transient equations for voltage collapse in CVTs. Relationship between files, if important: The "Model_vs_simulation_comparison_1_0.m" have to be in the same directory as the different transformer's folders. Plot files' names must be kept as they are. *** METHODOLOGICAL INFORMATION Description of methods used for collection/generation of data: The plots were generated through the corresponding EMTP files. The output are the voltages across Rm. Instrument- or software-specific information needed to interpret the data: Matlab 24.2.0.2712019 and EMTPWorks *** FILE TREE ├── Kojovic_1994 │ ├── Decomposed_transient_Kojovic_1994.ecf │ ├── Figures_Kojovic_1994.pdf │ ├── Peak_collapse_transient_400_1.fig │ ├── Peak_collapse_transient_M.fig │ ├── Peak_collapse_transient_Range_II_100.fig │ ├── Peak_collapse_transient_Range_II_25.fig │ ├── Peak_collapse_transient_T.fig │ ├── Peak_collapse_transient_W.fig │ ├── Peak_collapse_transient_X.fig │ ├── Peak_collapse_transient_ZT_4.fig │ ├── Peak_collapse_transient_ZZ.fig │ ├── Peak_collapse_transient_ZZT.fig │ ├── Peak_collapse_transient_burdenless.fig │ ├── Zero_crossing_collapse_transient_400_1.fig │ ├── Zero_crossing_collapse_transient_M.fig │ ├── Zero_crossing_collapse_transient_Range_II_100.fig │ ├── Zero_crossing_collapse_transient_Range_II_25.fig │ ├── Zero_crossing_collapse_transient_T.fig │ ├── Zero_crossing_collapse_transient_W.fig │ ├── Zero_crossing_collapse_transient_X.fig │ ├── Zero_crossing_collapse_transient_ZT_4.fig │ ├── Zero_crossing_collapse_transient_ZZ.fig │ ├── Zero_crossing_collapse_transient_ZZT.fig │ └── Zero_crossing_collapse_transient_burdenless.fig ├── Kojovic_1994_3 │ ├── Decomposed_transient_Kojovic_1994_3.ecf │ ├── Figures_Kojovic_1994_3.pdf │ ├── Peak_collapse_transient_400_1.fig │ ├── Peak_collapse_transient_M.fig │ ├── Peak_collapse_transient_Range_II_100.fig │ ├── Peak_collapse_transient_Range_II_25.fig │ ├── Peak_collapse_transient_T.fig │ ├── Peak_collapse_transient_W.fig │ ├── Peak_collapse_transient_X.fig │ ├── Peak_collapse_transient_ZT_4.fig │ ├── Peak_collapse_transient_ZZ.fig │ ├── Peak_collapse_transient_ZZT.fig │ ├── Peak_collapse_transient_burdenless.fig │ ├── Zero_crossing_collapse_transient_400_1.fig │ ├── Zero_crossing_collapse_transient_M.fig │ ├── Zero_crossing_collapse_transient_Range_II_100.fig │ ├── Zero_crossing_collapse_transient_Range_II_25.fig │ ├── Zero_crossing_collapse_transient_T.fig │ ├── Zero_crossing_collapse_transient_W.fig │ ├── Zero_crossing_collapse_transient_X.fig │ ├── Zero_crossing_collapse_transient_ZT_4.fig │ ├── Zero_crossing_collapse_transient_ZZ.fig │ ├── Zero_crossing_collapse_transient_ZZT.fig │ └── Zero_crossing_collapse_transient_burdenless.fig ├── Model_vs_simulation_comparison_1_0.m ├── Probst_2023 │ ├── Decomposed_transient_Probst_2023.ecf │ ├── Figures_Probst_2023.pdf │ ├── Peak_collapse_transient_400_1.fig │ ├── Peak_collapse_transient_M.fig │ ├── Peak_collapse_transient_Range_II_100.fig │ ├── Peak_collapse_transient_Range_II_25.fig │ ├── Peak_collapse_transient_T.fig │ ├── Peak_collapse_transient_W.fig │ ├── Peak_collapse_transient_X.fig │ ├── Peak_collapse_transient_ZT_4.fig │ ├── Peak_collapse_transient_ZZ.fig │ ├── Peak_collapse_transient_ZZT.fig │ ├── Peak_collapse_transient_burdenless.fig │ ├── Zero_crossing_collapse_transient_400_1.fig │ ├── Zero_crossing_collapse_transient_M.fig │ ├── Zero_crossing_collapse_transient_Range_II_100.fig │ ├── Zero_crossing_collapse_transient_Range_II_25.fig │ ├── Zero_crossing_collapse_transient_T.fig │ ├── Zero_crossing_collapse_transient_W.fig │ ├── Zero_crossing_collapse_transient_X.fig │ ├── Zero_crossing_collapse_transient_ZT_4.fig │ ├── Zero_crossing_collapse_transient_ZZ.fig │ ├── Zero_crossing_collapse_transient_ZZT.fig │ └── Zero_crossing_collapse_transient_burdenless.fig ├── README.txt └── Supplemental_Material_Complete_Derivation_of_Voltage_Transient_Collapse_Analytical_model _in_CVTs.pdf